Using SNP array to identify aneuploidy and segmental imbalance in translocation carriers
نویسندگان
چکیده
Translocation is one of the more common structural rearrangements of chromosomes, with a prevalence of 0.2%. The two most common types of chromosomal translocations, Robertsonian and reciprocal, usually result in no obvious phenotypic abnormalities when balanced. However, these are still associated with reproductive risks, such as infertility, spontaneous abortion and the delivery of babies with mental retardation or developmental delay. In recent years, array-based whole-genome amplification (WGA) technologies, including microarray comparative genomic hybridization (array CGH; aCGH) and single-nucleotide polymorphism (SNP) micro-arrays, have enabled the screening of every chromosome for whole-chromosome aneuploidy and segmental imbalance. These techniques have been shown to have clinical application for translocation carriers. Promising studies have indicated that array-based PGD of translocation carriers can lead to transfer pregnancy rates of 45-70% [2]. In addition to genetic testing techniques, the embryo biopsy stage (polar body, cleavage embryo or blastocyst) and the mode of embryo transfer (fresh or frozen embryos) can affect the outcome of PGD. It is now generally recommended that blastomere biopsy should be replaced by blastocyst biopsy to avoid a high mosaic rate and biopsy-related damage to cleavage-stage embryos, which might affect embryo development. However, more clinical data are required to confirm that the technique of SNP array-based PGD (SNP-PGD) combined with trophectoderm (TE) biopsy and frozen embryo transfer (FET) is superior to traditional FISH-PGD combined with Day 3 (D3) blastomere biopsy and fresh embryo transfer.
منابع مشابه
Hidden Markov models for the assessment of chromosomal alterations using high-throughput SNP arrays.
Chromosomal DNA is characterized by variation between individuals at the level of entire chromosomes (e.g. aneuploidy in which the chromosome copy number is altered), segmental changes (including insertions, deletions, inversions, and translocations), and changes to small genomic regions (including single nucleotide polymorphisms). A variety of alterations that occur in chromosomal DNA, many of...
متن کاملThe origin and significance of additional aneuploidy events in couples undergoing PGD for translocations by aCGH
Diagnostic application of array-CGH in PGD for reciprocal and Robertsonian translocations has revealed 55-65% embryos with additional aneuploidies with or without translocation related imbalances. The occurrence of extra abnormalities with translocations reduces the number of embryos suitable for transfer. This study followed up 83 embryos on day 5-7 of development from 23 infertile or sub-fert...
متن کاملجابهجایی دو طرفه متعادل کروموزومهای 5 و 18: گزارش موردی
Background: A balanced reciprocal translocation is a structural abnormality, which at least consist of breakage of two non-homologous chromosomes along with pieces exchange and form quadrivalant structure that can produce unbalanced chromosomes during meiosis I and result in a fetus abortion. The aim of the present study is to offer using preimplantation genetic diagnosis (PGD) 24sure array, wh...
متن کاملI-35: Polar Body Analysis by Array CGH Identifies Women with Varying Susceptibility to Aneuploidy and Suggests that Non-disjunction Is Not The Predominant Mechanism Leading to Aneuploidy in Humans
Background: The maternal age effect for trisomy is well known. However what is less established is whether certain women are more (or less) prone to segregation errors, independent of age. Trisomy arises primarily through maternal meiosis I chromosome segregation errors however the precise mechanism by which these errors occur is unclear. Current dogma attributes the origin of trisomy to malseg...
متن کاملOligonucleotide Arrays vs. Metaphase-Comparative Genomic Hybridisation and BAC Arrays for Single-Cell Analysis: First Applications to Preimplantation Genetic Diagnosis for Robertsonian Translocation Carriers
Comprehensive chromosome analysis techniques such as metaphase-Comparative Genomic Hybridisation (CGH) and array-CGH are available for single-cell analysis. However, while metaphase-CGH and BAC array-CGH have been widely used for Preimplantation Genetic Diagnosis, oligonucleotide array-CGH has not been used in an extensive way. A comparison between oligonucleotide array-CGH and metaphase-CGH ha...
متن کامل